An Introduction to Six Sigma

Jeffrey T. Gotro, Ph.D.
Agenda

- What is Six Sigma?
- Why would a company adopt Six Sigma?
- What are the challenges?
- What are the rewards?
- How is Six Sigma implemented?
- Summary and Questions
Six Sigma has many meanings

- A Symbol
- A Measure
- A Benchmark or Goal
- A Philosophy
- A Method
Six Sigma: A Symbol

- σ is a Statistical Symbol for Standard Deviation
- Standard Deviation is a Measure of Variability
Six Sigma: A Measure

- The “Sigma Level” of a process can be used to express its capability
 - How well it performs with respect to customer requirements.
- Percent Defects, C_p, C_{pk}, ppm
Doing the math

6 Sigma = 3.4 defects per million
5 Sigma = 230 defects per million
4 Sigma = 6,210 defects per million
3 Sigma = 66,800 defects per million
2 Sigma = 308,000 defects per million
1 Sigma = 690,000 defects per million
Six Sigma: A Benchmark or Goal

- The specific value of 6 Sigma (as opposed to 4 or 5 Sigma) is a benchmark for process excellence.
- Adopted by leading organizations as a goal for process capability.
Some Examples to Illustrate Typical Defect Rates

- IRS - Tax Advice (phone-in)
- Restaurant Bills
- Doctor Prescription Writing
- Payroll Processing
- Order Write-up
- Journal Vouchers
- Wire Transfers
- Purchased Material
- Lot Reject Rate
- Air Line Baggage Handling

Average Company

- (66,800 ppm)
- (6,210 ppm)
- (230 ppm)

Best in Class

- (3.4 ppm)
- (0.43 ppm)

Defects per Million Opportunities

SIGMA

© 2008 InnoCentrix, LLC
Six Sigma: A Philosophy

- A vision of process performance
- Delivering nearly defect-free products and services
- Focus on variation reduction
- A Guiding Management Principle
Six Sigma: A Method

- A well defined process and toolkit used for:
 - Product/Service Design
 - Quality Control
 - Quality Improvement
 - Strategic Planning
Six Essential Themes

- A genuine focus on the customer
- Data and fact-driven management (using effective measurement systems)
- Process focus \[Y = f(x) \]
- Proactive management drives improvement efforts
- Boundaryless* collaboration (including customers, suppliers, and supply chain partners)
- A drive for perfection with a tolerance for failure (freedom to take risks, learning from mistakes, drive to try new approaches)

* Termed by Jack Welch, CEO of GE
DMAIC Approach

![Diagram showing the DMAIC process with categories Define, Measure/Analyze, Improve, and Control. The chart illustrates defect rate over time with chronic waste, sporadic spikes, and common cause variation.]

- Sporadic Spike (Special Cause)
- Chronic Waste
- Common Cause Variation

© 2008 InnoCentrix, LLC
Six Sigma DMAIC Process

Define

- Project Scope
- Project Charter
- Business Impact
- Voice of the Customer (VOC)
- Affinity Diagram
- Kano Model
- CTQ Tree diagram

Measure

- Process Map
- Data Collection
- Control Charts
- Pareto Charts
- Prioritization Matrix
- Measurement System Analysis
- Process Capability
- Yields (RTY)

Analyze

- Multivari Analysis
- Cause & Effect Matrix
- FMEA
- Hypothesis testing
- ANOVA
- Noise Variables
- Scatter plots
- Design of Experiments

Improve

- Brainstorming & Creativity tools
- Design of Experiments (DOE)
- Full Factorial
- Fractional Factorial
- Response Surface
- Pilot Trials
- Implementation Plan
- Statistical Process Control (SPC)
- Standard Operating procedures (SOP)
- Data Collection & sampling plans
- Control Plans
- Measurement Systems Analysis (recheck)
- Project summary & lessons learned

Control

Data Collection & sampling plans
Control Plans
Measurement Systems Analysis (recheck)
Project summary & lessons learned
All Work is a Process

Supplier → Process (Value-added tasks) → Customer

S. I. P. O. C.

Requirements

Inputs → Output

Feedback

© 2008 InnoCentrix, LLC
What is a process?

Controllable Inputs (X’s) → Process → Key Process Outputs (Y’s)

Noise Inputs

Y = f (X)
Process Capability

Capable Process

This process is not capable
Visualizing Process Capability

\[C_p = 1 \]

\[C_p = 2 \]
Process Drift

\[C_p = 1.33 \]
\[C_{pk} = 1.33 \]

\[C_p = 1.33 \]
\[C_{pk} = 0.83 \]
Unstable Process

- Mean shifts present
- Excess variation (σ changes)
- Special causes of variation are present,
- Process output is not stable over time and is not predictable
Stable process:
- Variation reduced (lower σ)
- Process is centered in spec window
- Mean shifts reduced
- Only common cause variation is present
- Process output is stable/predictable
- The process is termed “in statistical control.”
History of Six Sigma

- Originated at Motorola in the early 80’s
- Doesn’t use “Quality” in the name
- Uses a modification of the Deming Plan-Do-Check-Act (PDCA) cycle
- Adopted widely in the 90’s by major corporations including AlliedSignal (now Honeywell), GE, Kodak, and a growing list.
Six Sigma Strategy

- Implementation is top-down. CEO driven with executive management and Champions (process owners) leading the initiative.
- Improvement projects must be integrated with the goals of the organization.
- Six Sigma uses a “divide and conquer” approach. Find and work on the most important key customer related projects.
- Uses several levels of competency in Six Sigma implementation:
 - Champions
 - Master Black Belt
 - Black Belt
 - Green Belt
Roles & Responsibilities

- Executive Team:
 - Provide continuous support to drive for results. Sets strategic direction, identify core business process issues, prioritize.

- Champion:
 - Identifies high impact projects by combining the strategic vision of the executive team & the key customer and process needs of the business.
 - Facilitates successful project completion, coaches teams.

- Master Black Belt:
 - Highly skilled & experienced in all aspects of Six Sigma.
 - Coach and mentor to Black Belts, works with Champion on project selection.
Roles & Responsibilities

- **Black Belt:**
 - Project Leader
 - Highly trained in Six Sigma methods and tools
 - Influencer, team facilitator, project manager

- **Green Belt:**
 - Project team member
 - Trained in Six Sigma methods and tools
Training for Six Sigma

- Executives
 - 8 hour Six Sigma overview and implementation roadmap development.

- Champion
 - 30 hour course, overview of DMAIC, Tools overview
 - Focus on developing project selection skills

- Black Belt
 - 160 hours of classroom
 - Required to have a project
 - Class for 1 week (40 hours) and project work for 3-4 weeks
 - Total of 4 months to train

- Green Belt
 - 30-80 hours depending on training philosophy
 - May or may not have to complete a project
Projects Drive Six Sigma Success

Types of Six Sigma Projects
- Manufacturing Quality Improvement (origin of Six Sigma initiatives)
- Design for Six Sigma (DFSS) for product development
- Business process improvement (transactional Six Sigma)

Some companies find much larger impact in transactional type projects:
- One company:
 - $150-250K for manufacturing improvement projects
 - > $500K for transactional projects

Process management methods rarely used for business process improvements

Transactional Six Sigma is a Huge Opportunity
Identifying Six Sigma Projects

Basic Project Criteria
- Problem in key business activity
- Large financial impact
- Can measure and quantify performance

Easy to Fix?
- yes → **Quick Hit**
- no → **Solution Available?**
 - yes → **Other Initiative**
 - no → **Six Sigma Project**

Six Sigma Project
- Process focus
- Analyze Y = f(x)
- Reduce variation & defects
- Complex relationships

© 2008 InnoCentrix, LLC
Project Focus

- Projects are chartered by Champions and business leaders
- Led by Black Belts
- Assisted by Green Belts
- Each experienced Black Belt can typically handle between 4-6 projects per year
- Typical financial impact is approximately $175,000 per project
- Experienced Black Belt can generate about $1M in savings per year
Why adopt Six Sigma?

- Concept has been around for 16 years, proven track record at big companies.
- Has shown the most endurance and return on investment of any improvement initiative.
- Starting to be implemented in small and medium-sized corporations.
- Provides a comprehensive set of philosophies, tools, methods, and fundamental concepts leading to quantifiable business results.
- Involves the entire organization; from CEO, CFO, Champions, Black Belts, Green Belts, and workers.
What are the Challenges?

- Takes careful preparation and a commitment to fundamental change efforts required.
- Training – key for all levels in the organization
- It is not a quick fix nor a “one-size-fits-all” approach.
- Implementation tends to be uneven and lapses occur frequently.
- Tendency to work on too many projects at once. Resource limitations are real!
- Need to manage expectations on payback time, typically takes 9-12 months from roll-out to start seeing quantifiable financial gains.
What are the Challenges

- Not everything has to be Six Sigma; this was the downfall of reengineering efforts! Choose your projects carefully.
- Statistical analysis is not generally part of the engineering discipline in most companies.
- Determine the role of DFSS and transactional Six Sigma in your organization
- Needs to focus on people issues and change management
- People must not fear giving “bad news” and continually require data-driven decision making.
What are the Rewards

- Increased value to the customers and shareholders.
- Improved reliability and predictability of products and services.
- Significant reduction in defects.
- Institutionalization of a “process” mindset.
- Increased competitive advantage.
Some Results...

- Motorola – 10 years; $11 Billion Savings
- AlliedSignal - $1.5 Billion estimated savings
- General Electric – started efforts in 1995
 - 1998: $1.2 Billion less $450 Million in costs... net benefits = $750 Million
 - 1999 Annual Report: more than $2 Billion net benefits
 - 2001: 6,000 projects completed; $3 Billion in savings
The Road to Six Sigma

Usually has many twists and turns!
Six Sigma Implementation

- Appoint an implementation team leader
- Use a multifunctional team to lead roll-out
- Work with Execs & Champions to develop a Six Sigma Roadmap
- Establish quantifiable goals
- Formulate an implementation plan
- Develop a mechanism to coach black belts & teams
- Implement project review and metrics tracking mechanism
Six Sigma Roadmap

- Identify core processes & key customers
- Define key customer drivers
 - Voice of the Customer (VOC)
 - Critical to Quality (CTQ’s)
- Measure and baseline current performance
- Prioritize, analyze, charter and kick-off key improvement projects
- Develop a diversified project portfolio (short and long term projects)
- Expand and integrate the Six Sigma system across the enterprise as experience grows
Costs to Implement

- Direct payroll (individuals dedicated full-time to Six Sigma)
- Indirect payroll (executives, champions, process owners, etc.)
- Training and consulting costs (Champion, black and green belt, implementation and project reviews)
- Improvement implementation costs (cost to implement solutions found in BB projects)
Where Do You Start?

- Business Transformation
 - Full scale change initiative
- Strategic Improvement
 - Address a strategic weakness
 - Used to build a core competency that is missing (such as VOC, or measurement systems)
- Problem Solving
 - Most popular starting point
 - Focus on key short-term and long-term improvement projects to get maximum impact
What are your core processes?

- Product Development Process
- Order fulfillment process
- Customer service process
- Support Processes
 - Finance
 - Administration (HR, legal, etc.)
 - Information technology
Customer centric core process

Product Development Process

Understand Customer Needs → Design Product → Build Product → Test Product → Sell Product
Customer centric core process

Order Fulfillment Process

Develop Customer Relationship → Take Order → Build Product → Service Product → Bill Customer
Six Sigma Summary

- Disciplined & Systematic Approach
 - Process orientation, drive for variation reduction
 - Focus on quantitative methods and tools
 - Focus on control to hold the gains
 - Uses a new metric for defects (sigma, DPMO, ppm)

- Results oriented management leadership, using data-driven decision making

- Significant training & organizational learning
Six Sigma Summary

- Success happens “one project at a time”
- Good project selection leads to large financial impact
- Implementation is hard work, not magic. Expect bumps in the road, stay the course, results will happen
- Six Sigma is “A journey not a destination”